
Will the Real Reliable Messaging Please Stand Up? 
 
A.K.A. WS-Reliability,  WS-ReliableMessaging, or WS-ReliableConundrum? 

Dave Chappell 
 
Open standards for reliable Web services messaging, such as WS-Reliability, can provide the 
missing link to bridge the gap between organizations and help make Web services a truly 
enterprise-capable technology for standards-based systems integration.   
 
Along with security, reliable asynchronous communications has been one of the gaping holes in 
today’s Web services architecture.  Lack of reliability, due to the inherent nature of using SOAP 
over protocols such as HTTP, is one of the biggest obstacles to the adoption of Web services for 
mission-critical communications between applications and services, such as complex business-to-
business transactions or real-time enterprise integration.   Standards-based reliable messaging is a 
cornerstone of the rapidly emerging standards-based integration technology category known as the 
“Enterprise Service Bus” (ESB). 
 
In fact, the need for open standards for reliable Web services has become so widely recognized that 
we now have 3 competing sets of SOAP-based reliable messaging out there.  All were recently 
announced, and all are named under the defacto branding of "WS-*".  There is the OASIS WS-
Reliability spec that a large number of vendors, including Sonic, is a part of.  There is a one-vendor 
set of specs announced by BEA recently, known as WS-Acknowledgement, WS-Callback, and 
WS-MessageData.  Then less than 2 weeks after that announcement, along came another competing 
specification announced jointly by Microsoft, IBM, BEA, and TIBCO, known as WS-
ReliableMessaging and WS-Addressing.  So it would seem that BEA is even competing with itself 
in this area.   
 
On the plus side, it’s a pleasure to see that reliable message-based communications—a subject that 
has long been very near and dear to my heart—has finally become a widely recognized requirement 
for Web services.  So much so that we are witnessing a “land grab” for mindshare and thought 
leadership in this area.  The world’s largest vendors are doing battle in the press, making claims 
about superior technical prowess, and making accusations about being “proprietary”.  The 
downside is that the current situation of multiple overlapping specifications is bound to cause 
further fracturing in the marketplace.  The chair of the OASIS Reliable Messaging Technical 
Committee, Tom Rutt of Fujitsu, has publicly stated an open invitation for all of these to converge 
under the OASIS TC, and remains optimistic about that happening.  Unfortunately, politics may 
prevail.  What the user community, and most of the vendor community, wants is one spec that 
everyone can point at and feel good about, so we can all move on to larger issues. 
 

The “Superior” spec 
 
After careful examination, I have come to the conclusion that all of the new specs by-and-large 
cover the same ground. They all do SOAP-based reliable messaging via acknowledgements, and 



have varied levels of Quality of Service (QoS) options like at-most-once and at-least-once.  All 
have an ability to specify a URI (URL) as a place to receive asynchronous callbacks, and a message 
ID based mechanism for correlating asynchronous requests with asynchronous “responses”.  The 
smaller differences include things like duplicate-elimination, acknowledgement timeouts, or 
purported support for WS-Security.   
 
The following is a summary of the three initiatives. They are split up into components of as many 
as specs in each case: 
 

WS-Reliability -  
 
The WS-Reliability spec itself was announced in January 2003. The announcement of the 
formation of an OASIS Technical Committee (TC) happened in shortly thereafter in February 
2003.  Members include CommerceOne, Cyclone Commerce, Fujitsu, Hitachi, Infosys, Iona, 
Javector Software, NEC, Nokia, Oracle, SAP, SeeBeyond, Sonic, Sun, Sybase, webMethods, 
WRQ.  Just in case its not confusing enough--the name of the draft spec is called "WS-Reliability", 
and the name of the TC is called "Web Services Reliable Messaging", or WS-RM. 
 
The initial WS-Reliability specification is a draft that was purely intended to be a starting point as 
input into the formation of the OASIS TC.  A number of the things that the other specs address, like 
WS-Security support, multi-hop routing, and more details on the semantics of timeouts and retries, 
are all things that the initial authors of the WS-Reliability spec had realized needed to be addressed.  
However, the consensus was that we should wait for the establishment of the formal TC and work it 
out there when more companies could get involved.  For the most part these things are captured in 
the “issues” section of the spec.  The TC charter also clearly identifies that things like end-to-end 
reliability and policy frameworks are issues that it wants to address. 

WS-ReliableMessaging/WS-Addressing -  
 
A pair of specs that are a joint MS/IBM/BEA/TIBCO effort.  Announced on Thursday, 3/13/2003, 
WS-ReliableMessaging is very similar in form to the draft OASIS WS-Reliability spec.  There 
have been some claims by the authoring companies that this set of specs is superior because they 
have ties to the WS-Policy framework and WS-Security specifications.  WS-Policy and WS-Policy-
Assertions are a formal way of asserting capabilities, such as Quality of Service (QoS) and security, 
and carrying that type of information in SOAP headers.  WS-Policy is a good idea, but at the 
moment the WS-Policy* specs have not been submitted to any standards body.  By the time this 
goes to print that may have changed as well.  In any case, lets look at it for what it is.  Having 
support for WS-Policy* really just means that a <AckRequested> tag in WS-ReliableMessaging 
conforms to the idiom established by the WS-Policy* set of specs.  In contrast, the WS-Reliability 
spec simply saying that <AckRequested> is a header tag.  In defense of WS-Reliability, the WS-
Policy* support is something that could easily be added to WS-Reliability with as much as an 
editing pass, if that’s what the TC decides to do.  At the moment the TC has issues with pulling in 
specifications that aren’t recognized as part of any standards body effort. 
 



WS-ReliableMessaging does have ties to WS-Security, although the way that its done is simply to 
have a section that calls out some things where WS-Security ought to be applied. 
WS-Addressing is a companion spec which defines things like From: and To: in the SOAP header 
in a way that can retain that type of information across multiple protocol boundaries or 
intermediary hops. 
 

WS-Acknowledgement, WS-Callback, and WS-MessageData -  
 
This is BEA's proprietary set of reliable messaging specs, which were announced at the opening 
day of BEA e-World user conference on 3/2/2003, a week and a half prior to the joint 
MS/IBM/BEA/TIBCO WS-ReliableMessaging/WS-Addressing announcement.  This set of specs is 
a group of 3 that collectively define SOAP-based reliable messaging.  Here is a brief description of 
the role each one plays.   
 
WS-Acknowledgement - Similar in form to OASIS WS-Reliability and WS-ReliableMessaging.  
SOAP-based reliable messaging with acknowledgements and QoS options like at-most-once and at-
least-once. 
 
WS-Callback - A SOAP header mechanism for specifying a URI (URL) for the location of a 
callback listener. 
 
WS-MessageData - A very simple spec for naming headers that specify message IDs and 
correlation ID's (RefToMessageID). 
 
In this article, I’m not going to focus too much on the one-vendor set of specs, since I’m willing to 
bet that even BEA isn’t sure what they’re going to do with that situation going forward.  Although 
having read through them, the short answer is they are pretty much the same as the other two 
efforts. 

Implied Behavior 
Another thing that these specs are they have in common is there is a great deal of implied behavior 
and “reading between the lines”.  I’ll be the first to admit that about the OASIS WS-Reliability as 
well.  I often get questions for clarity about things that I thought were pretty obvious in the 
language of the spec ☺.  The intent of the WS-Reliability authors since the beginning was to create 
a draft spec to serve as input into the formation of the OASIS Technical committee.   There are lots 
of unanswered questions, many of which are addressed in the “Issues” section.  During the 
formation of the WS-Reliability spec, we raised lots of issues that in particular had to do with the 
behavioral semantics of the underlying sending and receiving message handlers, and decided to 
defer to the full formation of the OASIS TC and let the details be fleshed out with a larger 
community of vendors and other contributors.  And by the way, WS-ReliableMessaging isn’t 
perfect either.   Both specs have clarity issues to deal with. 
 
To illustrate this point, let’s take as an example the requirement of supporting guaranteed ordering 
of messages.  It’s one thing to have header tag definitions for message sequences, but there’s much 
more than meets the eye when it comes to fully spelling out the rules for what the behavior of the 



receiving message handler is supposed to be when it encounters a situation where a gap is detected 
in a group of messages.  Both WS-Reliability and WS-ReliableMessaging have provisions for 
detecting this condition and resending the missing message.  WS-ReliableMessaging has much 
more detail spelled out with regard to this, while WS-Reliability states it in the “issues” list as 
something that needs to be more fully fleshed out by the OASIS TC.  Another example is 
acknowledgement handling.  Both specs have an “AckRequested” header, although in WS-
ReliableMessaging its unclear if the <AckRequested> tag is required all the time, or only for the 
case where an acknowledgement is lost or missing.  The spec seems to imply the latter in one of its 
diagrams, but it never really comes out and explicitly states this.  In reality, its really a “Re-Ack” 
request.  I am communicating with the WS-ReliableMessaging spec authors on this, so hopefully 
this will be cleared up in a future revision of the spec. 
 

Reliable Messaging via Acknowledgements 
The common thread across these specs is the notion of verifying the delivery of messages through 
the use of an acknowledgement message from the receiver.  There is an assumption that there is a 
message handler layer that takes care of this, as shown in figure 1. 
 

 
 

Figure 1: Message handlers achieve reliability via acknowledgements 



 
One of the things that WS-ReliableMessaging has in its favor is the notion of group 
acknowledgements.  A single acknowledgement message may be sent which contains a range of 
message sequence Ids, including those that are non-contiguous.  Furthermore, it appears possible 
for acknowledgement messages may by attached to other business-level response messages.  WS-
Reliability simply states in the “issues” section that the behavioral semantics of the receiving 
message handler need to be further specified with regard to groups of ordered messages. 
 
Another thing WS-ReliableMessaging has in its favor is the notion of a retransmission interval and 
an acknowledgement timeout.  Presumably these two can be used in conjunction with each other to 
keep the number and frequency of message retries to an optimal minimum, allowing a sliding 
window of time where multiple acknowledgements can be batched together in a single message in 
the case where there are no other business level response messages to attach the acknowledgements 
to.  This is another one of those “read between the lines” issues, and one that must be approached 
with caution.  If the retransmission interval is an equal or smaller time interval than the 
acknowledgement timeout, then too many retries can occur, or retries and acknowledgements can 
cross over each other simultaneously.  Determining the correct ratio between these two time 
settings is key.  I have made a request of the spec authors for more clarity on this, and hopefully it 
will be addressed in future versions of the spec.   
 
In contrast, WS-Reliability simply states that the retries are configurable, and that a Fault should be 
raised after a certain configurable number of retries. 
 

Message Persistence 
Message Persistence, combined with message acknowledgement, has been a key concept of reliable 
messaging since Message Oriented Middleware (MOM) has been in existence, and is a critical 
factor in the new ESB architecture as well.  Message persistence allows a sending application to 
“fire-and-forget” a reliable message, and delegates to the underlying message handler the 
responsibility of getting the message to its destination (Figure 2).   
 



 
 
Figure 2: Message Persistence 
 
Message persistence combined with an acknowledgement contract between the sending application, 
the persistence mechanism, and the receiving node makes recovery possible should the sending 
application, the message handler, or the receiver fail for any reason during the send operation.  
Likewise, having a similar contract from the receiver’s perspective can make the processing of 
ordered groups of messages much more capable of recovering from failure.  The importance of 
persistence can be further magnified when you go beyond just two endpoints and consider a larger 
business process that spans multiple applications and services as shown in figure 3.  Without 
persistence, a failure or temporary unavailability of one of the applications can affect all concerned. 
 



 
 
Figure 3: Message persistence can remove the requirement for constant availability. 
 
WS-Reliability states that persistence is a requirement for both the sending and receiving message 
handler, although it admittedly leaves the details of that as an open issue.  WS-ReliableMessaging 
makes no mention of persistence whatsoever, although there is nothing that precludes it either.  It’s 
unclear whether that is an oversight, or the intent.  It definitely needs clarity on this.  One could 
imagine a reliable protocol sans-persistence that is purely based on acknowledgements and retries.  
However the unavailability scenario in figure 3 would result in a fairly complicated exchange of 
resends and re-acks.  Of course, persistence is not without cost.  There is always a performance 
tradeoff to consider when writing things out to disk.   Both specs need more clarity in this area.   

Comparison Chart 
 
 WS-Reliability WS-ReliableMessaging 

   

Acknowledgement Yes Yes 

Message Persistence Yes Nothing directly stated 



Message Ordering Yes Yes 

At-Most-Once Yes Yes 

At-Least-Once Yes Yes 

Exactly-Once Yes Yes 

TimeToLive Yes Yes 

Duplicate Detection Yes Indirectly implied by 
Exactly-Once semantics 

Hop-by-hop 
Acknowledgement 

No, but 
recognized by 
"issues", and by 
TC Charter 

Assumed to be covered 
by WS-Addressing 

Retry Yes Yes, with exponential 
backoff 

Fault Handling Yes Yes 

Ack timeout No, but 
recognized by 
"issues" 

Yes 

Ack Piggyback No, but 
recognized by 
"issues" 

Yes 

Async Yes Yes 

Sync Yes Yes 

Standards Body Yes Not yet 

Message ID Yes Yes 

Correlation ID Yes Yes 

Callback location Yes, via URI Yes, via WS-Addressing 

Security No Sort of  

Transaction No  No 

 
 

The Road Ahead 
 
It is unlikely that the competing mega-vendors will concede on this “land-grab” for thought 
leadership and the race to captivate the developer community with “standards” that boast superior 
technical prowess.  Microsoft and IBM have stated publicly that they fully intend to bring all of the 
WS-* specifications to a standards body eventually.  2003 will prove to be the “year of the 
standards shakeout”—or “shootout” depending on how it all unfolds.  Lets just hope that you and I 
don’t get caught in the crossfire. 



 
Even though we had a hand in the crafting of the OASIS WS-Reliability spec, we are going to 
continue to retain an open and objective viewpoint on all of these specs.  Sonic is not interested in 
getting caught up in the press wars about who has the better spec.  Neither are we that concerned 
over which spec wins.   This is not a “In the end….There can be only one” situation. There may 
actually be two or three!  Spec prowess is one thing, implementation is another.  Message based 
protocols require a message based infrastructure.  Regardless of what the SOAP header tag looks 
like, there’s still a requirement for a strong messaging infrastructure behind it.  Reliable messaging 
is a tricky business, which takes a great deal of experience to get it right.  One of the overarching 
“read between the lines” aspects of all of this is the requirements of the sending and receiving 
endpoints, and how they deal with the many intricacies of things like message persistence, failure 
and recovery scenarios, message redelivery, duplicate detection, in-doubt delivery status, and race 
conditions with overlapping retries and acknowledgements. The intricacies that can arise out of all 
these things combined in a day-in, day-out massive deployment environment can be daunting. 
 

Moving On 
 
Reliable messaging is a cornerstone to any enterprise capable integration strategy.  Regardless of 
how this WS-Reliable-Conundrum turns out, the world needs to start focusing on the larger issues.  
Beyond the base reliable messaging protocol, you still need to think about things like how the 
messages are orchestrated together, how the XML messages get cached and aggregated, and what 
the buckets are to place things in when good messages go bad.  The rapidly emerging ESB category 
encompasses these types of issues, and allows for multiple reliable protocols to coexist together. 
In the end its all about the infrastructure that holds it all together in a platform independent fashion.   
 


